Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed8356    
    Printed270    
    Emailed4    
    PDF Downloaded141    
    Comments [Add]    

Recommend this journal

 

 ARTICLES
Year : 1998  |  Volume : 1  |  Issue : 1  |  Page : 56--66

Distortion product otoacoustic emissions in acute acoustic trauma


HNO-Universitätsklinik, Leipzig, Germany

Correspondence Address:
Jens Oeken
HNO-Universitätsklinik, Liebigstr. 18a, D- 04103 Leipzig
Germany
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 12689368

Rights and PermissionsRights and Permissions

Acute acoustic traumas are caused by exposure to extremely high noise levels ranging from milliseconds to several hours' duration. In pure tone audiometry they range from the C5 dip to basomediocochlear sensorineural hearing loss. Their pathogenesis is assumed to consist of micromechanical-traumatic and biochemical-metabolic damage to the outer hair cells. In order to establish the changes to the DPOAE (distortion products of otoacoustic emissions), 17 patients were examined after sustaining acute acoustic trauma. The causes included firework explosions, anti-tank rocket launchers, vehicle tyre bursting, rock concerts, hand-gun shots, sub-machine gun fire, hand grenade explosion, exploding car battery. The pure tone audiogram, tympanogram, tinnitus maskability and DPOAE (both DP-gram and growth rate in various frequencies) were determined in all patients. If the event had occurred some time ago, measurements were taken only once; in acute cases measurements were repeated at different times. In nine patients with persistent hearing impairment, clear DPs were found in the unaffected frequencies but were completely absent in the affected frequency range. Four of these patients were unilaterally and two patients were bilaterally affected; three patients had a different (not noise-induced) hearing loss on the opposite side. In eight patients with regressive hearing loss, DPs were by contrast detectable throughout the entire frequency range, their amplitudes only rising slightly as hearing recovered. Of these eight patients, three were unilaterally and five bilaterally affected. DPOAE seem to indicate the likelihood of recovery of hearing threshold after an acute acoustic trauma. In cases with DPs completely absent in the affected frequency range, the prognosis seems to be much worse than in cases with present DPs in the frequency range of hearing.






[FULL TEXT] [PDF]*


        
Print this article     Email this article