Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed7122    
    Printed152    
    Emailed5    
    PDF Downloaded134    
    Comments [Add]    

Recommend this journal

 

 ARTICLES
Year : 2001  |  Volume : 3  |  Issue : 12  |  Page : 1--17

Correlations among distortion product otoacoustic emissions, thresholds and sensory cell impairments


1 Laboratory of Sensory Biophysics, School of Medicine, Clermont-Ferrand, France
2 CNRS UPRESA 7060, Paris, France

Correspondence Address:
Paul Avan
Laboratory of Sensory Biophysics, School of Medicine, Clermont-Ferrand
France
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 12678937

Rights and PermissionsRights and Permissions

Distortion product otoacoustic emissions (DPOAE) are increasingly used as an objective test for noninvasive hearing screening. When two pure tones with frequencies f1 and f2 are sent to the cochlea, the most prominent DPOAE is the cubic one produced at 2f1-f2, and this presentation will mainly emphasize its properties. DPOAEs are undoubtedly generated by cochlear nonlinearities. It is widely held that they arise from certain stages of sound processing by the outer hair cells (OHC) and that OHCs ensure normal cochlear sensitivity and tuning. Thus, DPOAEs should provide a privileged tool for monitoring the harmful effects of loud sound because OHCs are known to be one of the main targets of NIHL. Although DPOAEs provide the clinicians with a reliable screening limit of about 30 dB HL around f2, no reliable relationship has been found thus far between possible residual DPOAEs and either hearing loss or amount of impaired sensory cells. Furthermore, puzzling contradictory findings have been reported as to the presence of DPOAEs despite a large hearing loss (i.e. >30-40 dB) notably with high-level stimuli. These observations raise the following issues. What is the generation site of DPOAEs in a normal or pathological cochlea (OHCs, basilar membrane, place tuned to f2, 2f1-f2, places basal to f2...)? Is it necessary to account for interferences between several discrete sources, arising from different locations or different mechanisms and possibly exhibiting differential susceptibility to sensory cell damage? Do DPOAE changes depend on the nature of OHC pathology (NIHL, anoxia, ototoxic drugs, genetics...)? Once a source of DPOAE is characterized, is there any means of modelling the physiological process of its generation and deriving what might quantitatively relate DPOAE amount to sensory cell activity and thresholds? The goal of this presentation is to examine these issues, review the available data and propose a comparatively simple model.






[FULL TEXT] [PDF]*


        
Print this article     Email this article