Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed36393    
    Printed743    
    Emailed14    
    PDF Downloaded787    
    Comments [Add]    
    Cited by others 9    

Recommend this journal

 

 ARTICLES
Year : 2004  |  Volume : 6  |  Issue : 23  |  Page : 73--85

Effects of low frequency noise up to 100 Hz


Federal Institute for Occupational Safety and Health, Berlin, Germany

Correspondence Address:
M Schust
Federal Institute for Occupational Safety and Health, Nöldnerstr. 40 – 42, D – 10317 Berlin
Germany
Login to access the Email id

Source of Support: None, Conflict of Interest: None


PMID: 15273025

Rights and PermissionsRights and Permissions

This review concentrates on the effects of low frequency noise (LFN) up to 100 Hz on selected physiological parameters, subjective complaints and performance. The results of laboratory experiments and field studies are discussed in relation to the thresholds of hearing, of vibrotactile sensation and of aural pain. The effects of LFN may be mediated trough different ways. Temporary or permanent hearing threshold shifts seem to be due to acoustic stimuli above the individual hearing threshold. However, non-aural physiological and psychological effects may be caused by levels of low frequency noise below the individual hearing threshold. The dynamic range between the thresholds of hearing and of aural pain diminishes with decreasing frequency. This should be taken into account by the setting of limits concerning the health risks. Sufficient safety margins are recommended. The use of a frequency weighting with an attenuation of the low frequencies (e.g. G-weighting) does not seem to be appropriate for the evaluation of the health risks caused by LFN up to 100 Hz. It may be proposed to measure third octave band spectra or narrow band spectra. A comparison with the known human responses caused by the measured levels and frequencies could help to evaluate the health risks. Some proposals for further investigations were given: (1) experimental methods to discover the ways mediating the effects of low frequency noise, (2) consideration of the individual hearing threshold or hearing threshold shift and of the vibrotactile threshold in the low frequency range to be able to judge the effects, (3) consideration of combined body vibration caused by airborne low frequency noise or by other sources, (4) modelling to analyse the transmission of the acoustic energy from the input into the body to the structures containing sensors, (5) consideration of probable risk groups like children or pregnant women.






[FULL TEXT] [PDF]*


        
Print this article     Email this article