Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1627    
    Printed53    
    Emailed0    
    PDF Downloaded18    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2016  |  Volume : 18  |  Issue : 85  |  Page : 391--398

Modeling signal-to-noise ratio of otoacoustic emissions in workers exposed to different industrial noise levels


1 Department of Occupational Health, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Occupational Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
3 Department of Audiology, School of Rehabilitation, Iran University of Medical Sciences, Tehran, Iran
4 Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
5 Department of Biochemistry, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Correspondence Address:
Dr. Sajad Zare
Assistant Professor, Department of Occupational Health, School of Public Health, Kerman University of Medical Sciences, P.O. Box: 513-76175, Kerman
Iran
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.195808

Rights and Permissions

Introduction: Noise is considered as the most common cause of harmful physical effects in the workplace. A sound that is generated from within the inner ear is known as an otoacoustic emission (OAE). Distortion-product otoacoustic emissions (DPOAEs) assess evoked emission and hearing capacity. The aim of this study was to assess the signal-to-noise ratio in different frequencies and at different times of the shift work in workers exposed to various levels of noise. It was also aimed to provide a statistical model for signal-to-noise ratio (SNR) of OAEs in different frequencies based on the two variables of sound pressure level (SPL) and exposure time. Materials and Methods: This case–control study was conducted on 45 workers during autumn 2014. The workers were divided into three groups based on the level of noise exposure. The SNR was measured in frequencies of 1000, 2000, 3000, 4000, and 6000 Hz in both ears, and in three different time intervals during the shift work. According to the inclusion criterion, SNR of 6 dB or greater was included in the study. The analysis was performed using repeated measurements of analysis of variance, spearman correlation coefficient, and paired samples t-test. Results: The results showed that there was no statistically significant difference between the three exposed groups in terms of the mean values of SNR (P > 0.05). Only in signal pressure levels of 88 dBA with an interval time of 10:30–11:00 AM, there was a statistically significant difference between the right and left ears with the mean SNR values of 3000 frequency (P = 0.038). The SPL had a significant effect on the SNR in both the right and left ears (P = 0.023, P = 0.041). The effect of the duration of measurement on the SNR was statistically significant in both the right and left ears (P = 0.027, P < 0.001). Conclusion: The findings of this study demonstrated that after noise exposure during the shift, SNR of OAEs reduced from the beginning to the end of the shift.






[FULL TEXT] [PDF]*


        
Print this article     Email this article