Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed1317    
    Printed31    
    Emailed0    
    PDF Downloaded8    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2017  |  Volume : 19  |  Issue : 86  |  Page : 1--9

Using Auditory Steady-State Responses for Measuring Hearing Protector Attenuation


1 Department of Mechanical Engineering, École de technologie supérieure, Université du Québec, Montréal, Québec, Canada
2 Rotman Research Institute of Baycrest Centre, University of Toronto, Toronto, Ontario; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada

Correspondence Address:
Olivier Valentin
École de technologie supérieure, Département de génie mécanique, 1100 rue Notre-Dame Ouest, Montréal (QC), H3C 1K3
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.199238

Rights and Permissions

Introduction: Present methods of measuring the attenuation of hearing protection devices (HPDs) have limitations. Objective measurements such as field microphone in real-ear do not assess bone-conducted sound. Psychophysical measurements such as real-ear attenuation at threshold (REAT) are biased due to the low frequency masking effects from test subjects’ physiological noise and the variability of measurements based on subjective responses. An auditory steady-state responses (ASSRs) procedure is explored as a technique which might overcome these limitations. Subjects and Methods: Pure tone stimuli (500 and 1000 Hz), amplitude modulated at 40 Hz, are presented to 10 normal-hearing adults through headphones at three levels in 10 dB steps. Two conditions were assessed: unoccluded ear canal and occluded ear canal. ASSR amplitude data as a function of the stimulation level are linearized using least-square regressions. The “physiological attenuation” is then calculated as the average difference between the two measurements. The technical feasibility of measuring earplug attenuation is demonstrated for the group average attenuation across subjects. Results: No significant statistical difference is found between the average REAT attenuation and the average ASSR-based attenuation. Conclusion: Feasibility is not yet demonstrated for individual subjects since differences between the estimates occurred for some subjects.






[FULL TEXT] [PDF]*


        
Print this article     Email this article