Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Email Alert *
Add to My List *
* Registration required (free)  

   Noise and Sleep
   Health Effects o...

 Article Access Statistics
    PDF Downloaded116    
    Comments [Add]    
    Cited by others 51    

Recommend this journal


ARTICLE Table of Contents   
Year : 2010  |  Volume : 12  |  Issue : 47  |  Page : 64-69
Sleep, noise and health: Review

Stanford Medicine Outpatient Center, Sleep Medicine Division MC5704, Redwood City, CA 94063, USA

Click here for correspondence address and email
Date of Web Publication14-May-2010

Sleep is a physiologic recuperative state that may be negatively affected by factors such as psychosocial and work stress as well as external stimuli like noise. Chronic sleep loss is a common problem in today's society, and it may have significant health repercussions such as cognitive impairment, and depressed mood, and negative effects on cardiovascular, endocrine, and immune function. This article reviews the definition of disturbed sleep versus sleep deprivation as well as the effects of noise on sleep. We review the various health effects of chronic partial sleep loss with a focus on the neuroendocrine/hormonal, cardiovascular, and mental health repercussions.

Keywords: Noise/adverse effects, arousal, sleep loss, neuroendocrine effects, behavioral effects

How to cite this article:
Zaharna M, Guilleminault C. Sleep, noise and health: Review. Noise Health 2010;12:64-9

How to cite this URL:
Zaharna M, Guilleminault C. Sleep, noise and health: Review. Noise Health [serial online] 2010 [cited 2023 Dec 10];12:64-9. Available from: https://www.noiseandhealth.org/text.asp?2010/12/47/64/63205

  Introduction Top

Chronic sleep loss is a widespread problem. In today's society, our around-the-clock lifestyle, increasing work pressure, and psychosocial stressors are major contributors for chronic sleep loss. Similarly, external stimuli often disturb or reduce sleep length, for instance, due to noise, one of the most frequent ambient factors. [1] As these less than ideal conditions become more pronounced, it is important that we understand the effects of chronic sleep loss. It is well established that after an acute period of sleep loss, the body responds by attempting to catch up by making us sleep more and more deeply the following night. This is the body's method of trying to maintain a homeostatic balance between sleep - our main physiological recuperative state - and wakefulness. Less is known, however, about the health consequences of chronic partial sleep loss, that is, gradually losing small amounts of sleep over a period of days, months or even years.

Chronic partial sleep loss may have many repercussions on health; however, many of these effects are still unknown. Most individuals have, at one time or another, experienced the effects of acute sleep deprivation. Controlled studies most commonly report negative effects of sleep deprivation on our cognitive functions and moods. [2],[3],[4] Recent studies demonstrated that successive nights of restricted sleep resulted in gradually accumulating decline in cognitive function. [5],[6],[7] While subjects may recover from these effects after a few nights of sleeping, [2] chronic sleep loss may contribute to physiologic changes that accumulate over time and may result in serious health consequences. [8] Recent studies report, for instance, that chronic partial sleep loss of even 2-3 h per night has detrimental effects on the body even in cases where individuals did not experience any subjective sense of sleepiness. [7],[9] Detrimental effects from sleep loss include impairments in cognitive performance, as well as cardiovascular, immune and endocrine functions. [8],[10] Sleep disturbance from prolonged exposure to noise has been associated with similar negative effects on mood and performance as well as cardiovascular and endocrine function. [1],[11],[12] Many factors can be considered when looking at the effects of noise on health such as the nature of disturbed sleep, the relationship between noise and sleep disturbance, as well as the adverse health consequences that result.

  Definition Top

There is an important distinction between sleep deprivation and sleep disturbance. Both sleep deprivation and sleep disturbances are commonly found in normal individuals as well as individuals diagnosed with a sleep disorder. Sleep deprivation is an acute or chronic lack of sufficient sleep, whereas sleep disturbance encompasses multiple disorders including insomnia, circadian rhythm disorders, and sleep-related breathing disorders, to name a few. The International Classification of Sleep Disorders (ICSD-2) includes over 70 specific diagnoses within the eight major categories, as well as two appendices for classification of sleep disorders associated with medical or psychiatric disorders. [13] Sleep deprivation creates problems that are often thought to be related to insufficient quantities of sleep, whereas sleep disturbances include disorders relating to sleep fragmentation, affecting the quality of sleep. Primary sleep disturbances include difficulty falling asleep, frequent awakenings, waking too early, and alterations in sleep stages and depth, especially a reduction in rapid eye movement (REM) sleep. Factors associated with sleep disturbance primarily involve individual environmental conditions. This includes parameters in the immediate environment such as ambient temperature, humidity and light, as well as other environmental parameters like noise and vibration, for example. A combination of these factors as well as reactivity of the individual determines the degree of sleep disturbance experienced. [14]

  Prevalence Top

The 2002 National Sleep Foundation Sleep in America poll [15] suggests that as many as 47 million American adults suffer from a sleep disorder. Insomnia, defined as difficulty falling asleep, waking often during the night, waking up too early and not being able to get back to sleep, and waking up feeling unrefreshed, is the most common sleep disorder. More than one-half of the respondents of the poll (58%) reported having experienced at least one of the four symptoms of insomnia at least a few nights a week, and 35% have experienced at least one of these four symptoms of insomnia every night or almost every night in the past year. Although chronic partial sleep loss is a common complaint among many individuals in today's society, the exact prevalence remains unknown. Epidemiological studies suggest that mean sleep duration has decreased substantially as proportionally more people are awake for longer periods of time. [16] The 2002 Sleep in America poll shows that, on average, individuals sleep 6.9 h a night on weekdays and 7.5 h on weekends. Over a quarter of people rate their sleep quality as fair or poor. [15]

  Noise and Sleep Top

By disrupting the known restorative function of sleep, noise is a prevalent and harmful cause of sleep disturbance.

Sleep patterns are particularly susceptible to noise for a number of reasons. First, our brains are able to process incoming acoustic stimuli even while asleep. Second, the noise levels that effect sleep are much lower than those required to impair hearing. The World Health Organization guidelines say that for a good sleep, sound level should not exceed 30 dB(A) for continuous background noise, and 45 dB(A) for individual noise events. [17] During sleep the levels that cause noise-induced stress reactions are much lower than in the active phase. Furthermore, a subject may sleep during relatively high noise levels but still show autonomic responses, such as increased heart rate.

The effect of noise on sleep, however, not only depends on the acoustical parameters of noise but also on the individual as there is large variance in the experience of a person with a particular noise. Personal characteristics such as personality traits, diurnal type, age and self-estimated sensitivity to noise are important individual factors. [18],[19],[20] Noise-induced sleep disturbance is proportional to the amount of noise experienced in terms of increased rate of changes in sleep stages and in number of awakenings. [21]

Acute primary effects of noise on sleep disturbance involve changes on the polysomnogram starting with a K-complex followed by increased brain activity with body movements and autonomous responses. Total time awake and/or total shallow sleep (stages 1 and 2) increases at the expense of slow wave sleep and REM sleep. Reducing indoor noise levels can increase the amount of slow wave sleep and REM sleep. [22] Secondary subjective effects of environmental noise causing disturbed sleep include impaired self-estimated sleep quality, mood and performance. [23]

Chronic exposure to an environmental noise (EN) induces sleep disturbances although it is not fully known what impact these disturbances have on humans. In one study, rats were exposed to environmental noise for 9 days. Results showed that this chronic exposure continually restricted the amount of slow wave sleep (SWS) and paradoxical sleep (PS) and fragmented these two sleep stages with no habituation effect. [24] As previously mentioned, autonomic responses to noise during sleep can be obtained for much lower peak noise intensities as during wake states. These effects, mainly involving increased heart rate and vasoconstriction, have been found to habituate over successive noise-exposed nights as opposed to long exposure times. This could indicate an effect on cardiovascular response over the long term. [19]

Similarly, several studies demonstrate next day effects in humans after sleep disturbance. Noise exposure during sleep may increase blood pressure, heart rate and finger pulse amplitude as well as body movements. [21] During the day following disturbed sleep by road traffic noise, after effects such as decreased perceived sleep quality, mood and performance in terms of reaction time were found. [21]

Epidemiological studies have focused on the impact of noise on individuals such as patients in hospitals and the impact of particular sources of noise (e.g., aircraft) on sleep. The Health Council of the Netherlands considers the evidence to be sufficient to establish a causal relationship between the long-term effects of noise-related sleep disturbances, and changes in sleep patterns, awakening, sleep stages and subjective sleep quality. [25] Some individuals may be more susceptible to noise occurring during sleep, as well as in the waking state, with day and night noise being a significant problem for night workers, mothers with babies, elderly persons, persons who are especially vulnerable to physical or mental disorders, and other individuals who experience sleeping difficulty.

It still remains questionable whether environmental noise has any long-term detrimental effects on health. Most studies are of relatively short duration (between 3-16 nights) due to the expense and effort involved with exposing participants in studies to long-term noise exposure and sleep monitoring. One study did follow subjects for 40 days. [26] Thirty subjects were monitored on a 24-h tone pulse for a 30-day exposure period and a 10-day post-exposure period. No significant change was found in mean heart rates at night, total body movements during the night, objective sleep latency, total hours of sleep, number of awakenings and percent time for sleep stages.

To summarize, the causal relationships between noise exposure, effects on sleep, and contribution to chronic disease, behavioral changes, and changes in physical, mental and social well-being are not yet firmly established. Therefore, the significance of the various primary and secondary effects of noise on sleep disturbance cannot be adequately assessed without further long-term research.

  Health Effects of Disturbed Sleep Top

It is difficult to identify the cumulative effects of chronic partial sleep loss prior to their emergence as a major pathology. Historically, sleep has been viewed as a means to prevent fatigue and exhaustion. [27] Current understanding, however, indicates that sleep has important physiologic restorative functions. An improved understanding of physiologic activities during normal sleep has shed light on the important cardiovascular, neuroendocrine, immunologic and behavioral/cognitive changes associated with disturbed sleep. Over the last decade, experimentally based data were collected on chronic restriction of sleep (by 1-4 h at night), accumulating daytime sleepiness and cognitive impairment. [28] Most individuals develop cognitive deficits from chronic sleep debt after only a few nights of reduced sleep quality or quantity; new evidence suggests additional important health-related consequences of sleep debt related to common viral illnesses, diabetes, obesity, heart disease, depression and other age-related chronic disorders. [29] Next, we review current knowledge on chronic sleep disturbance and effects on health.

Neuroendocrine and hormonal effects

The main neuroendocrine systems involved in the human body's response to stress are the autonomic sympatho-adrenal system and the hypothalamic-pituitary-adrenal (HPA) axis. [20],[31] Stress is defined as a nonspecific physiologic response to any kind of demand that an organism faces. [32] Sleep disruption acts as a stressor and results in activation of these classical stress systems. The sleep state has a suppressive effect on the stress system and results in lower plasma levels of stress hormones such as cortisol and adrenaline.

Sleep deprivation has been shown to create a higher activity level of these stress systems resembling that seen in the wakeful state. However, it is not certain whether sleep deprivation increases the stress system activity to a point beyond what is seen in relaxed wakefulness. [10] One study showed that partial sleep deprivation, where sleep was restricted to 4 h a night for six nights, resulted in increases of cortisol only in the afternoon after the partial sleep loss. The study, however, also noted that, in these healthy young men, glucose tolerance and glucose effectiveness after partial sleep loss were similar to that seen in aging or in gestational diabetes. Paying off the sleep debt by extending subjects' sleep for 1 h for one week completely normalized the impaired glucose tolerance. [33]

Sleep deprivation and sleep disruption significantly affect cortisol and adrenocorticotropic hormone (ACTH) secretion. Several studies have shown that stage one sleep and awakenings during sleep are associated with increased cortisol concentrations. [34],[35] In contrast, one study showed that sleep fragmentation and sleep deprivation substantially altered the patterns of cortisol secretion although average cortisol concentration was not significantly changed. This study compared the influence of temporary sleep deprivation to arousals continuously induced during sleep on pituitary-adrenocortical activity in 10 healthy subjects. Sleep disruption introduced during the second REM epoch did not alter the average release of ACTH and cortisol during the night. [36] However, there was an initial cortisol peak following the initial introduction of sleep disruption. This study suggested that sleep attenuates negative feedback inhibition within the HPA system, whereas wakefulness (or stage 1 sleep) reflects increased feedback sensitivity of this system.

Patients with sleep apnea have been shown to display decreased growth hormone and prolactin secretion at night. [37],[38] This decrease was observed to reverse after sleep was normalized, suggesting that the cause was sleep fragmentation. Still, such changes in hormone levels have not been studied separately in sleep fragmentation (i.e., not resulting from sleep related breathing disorder or to sleep deprivation).

The majority of sleep literature has focused on hormonal effects of total sleep deprivation. Thyroid activity, including TSH, T3, and T4 levels, is increased by sleep deprivation. [39] Minimal changes in adrenal and sex hormones have been found. Insignificant changes in cortisol, adrenaline, catecholamine output, hematocrit, plasma glucose, creatinine and magnesium are seen in total sleep deprivation. [40] However, patterns of secretion may change even if the total amount of hormone secretion remains relatively unaltered. Moreover, prolactin, noradrenaline and growth hormones seem to lose their periodic pattern of excretion during times of sleep deprivation. [41],[42]

In summary, chronic sleep loss, including those related to chronic noise exposure, could lead to development of various problems, both centrally and peripherally, associated with glucocorticoid excess including memory deficits and insulin resistance.

Cardiovascular effects/autonomic nervous system

During sleep, heart rate is related to changes in the parasympathetic-sympathetic balance with an increase in sympathetic tone associated with activation and with electroencephalogram(EEG) arousal. Catecholamine levels and sympathetic activity decrease during sleep. So, as one might assume that decreased sleep is associated with increased sympathetic activity and as a result increased blood pressure and heart rate. This association has been observed not only with sleep deprivation but also with regard to sleep disruption. Brief awakenings from sleep for only a few seconds are associated with temporary elevation in blood pressure and heart rate that results from an autonomic reflex. [43] One study reports heart rate acceleration with auditory stimulation during sleep even when no EEG arousal was observed. These findings thus question whether activation of the autonomic nervous system night after night without visual EEG arousal or alpha-alpha-beta EEG changes of shorter duration could have long-term detrimental effects on the cardiovascular system. By contrast, the results suggest that brain stem activation can lead to autonomic nervous system response without creating objective consequences on specific tests of psychomotor vigilance during the following day. [44]

Behavioral/cognitive/mental health effects

There is sufficient literature that documents the detrimental effects of chronic partial sleep loss on behavior, cognition and mental health conditions. The fact that many individuals live in a state of chronic partial sleep loss highlights the importance of understanding and quantifying the effects of sleep loss on daily functions.

Studies report that total and partial sleep deprivation cause changes in mood and cognition such as increased sleepiness, fatigue, irritability and an overall decrease in concentration. [6],[8] Other effects of sleep deprivation include longer reaction times, poor short-term memory, reduced motivation, distractibility and poor performance. [8] Effects of sleep fragmentation are similar. On days following disturbed sleep, psychomotor performance is impaired and subjective sleepiness is higher. Changes in multiple sleep latency test (MSLT) with sleep fragmentation suggest that sleepiness increases as the rate of fragmentation increases. [8] Several studies have examined whether these effects are due to changes in the amount of sleep stages (for example, increases in stage 1 sleep) or losses of slow wave sleep. [45],[46],[47],[48] These studies indicate that the effects of sleep fragmentation on sleepiness, as measured by MSLT and maintenance of wakefulness test (MWT), are caused primarily by sleep continuity disturbances rather than changes in sleep stages.

Sleep fragmentation has also been shown to impair functioning even when the total amount of sleep time remains relatively unchanged. In a recent study the sleep of 11 subjects was disrupted by an audiometer on two consecutive nights. The results suggest that periodic disruption of sleep quickly results in impaired functions comparable to that of 40-64 h of total sleep loss. The disruption procedure resulted in severely fragmented sleep with only a small amount of slow wave and REM sleep, even though the total amount of sleep time was reduced by only 1 h per night. [49] A different study showed that MSLT was reduced after both total sleep deprivation and 1-min sleep fragmentation. There was, however, no statistical difference in sleep latencies between the two groups (sleep latency of 2.2 min in the total sleep deprived group and 4.1 min in the sleep fragmented group). [50] Finally, one study showed similar deficits in vigilance hit rate and nap latency but greater deficits in performance following total sleep deprivation as compared to 1-min sleep fragmentation. [51]

Sleep disordered breathing has been associated with impaired cognitive function as a result of various factors including chronic partial sleep loss from insufficient nocturnal sleep with sleep architecture changes. [52],[53] Reported effects include deterioration in memory, intellectual capacity and motor coordination as well as decline in ability to perform psychomotor vigilance tasks including visual reaction and auditory learning. [54],[55] Personality changes, irritability, depressive symptoms and an increased proneness to accidents have been observed as well. [56],[57]

  Conclusions Top

Environmental factors, such as work pressure, lifestyle choices and noise are major causes of sleep disturbance. Because sleep is a crucial physiological recuperative state, sleep disorders are a cause of many negative health effects. Such effects include, but are not limited to, cardiovascular problems, neuroendocrine abnormalities and changes in cognition, mood and memory. The causal relationships between noise exposure, effects on sleep, and contribution to health disturbances, both behavioral and physical, are not yet firmly established. Many of the health effects noted have been shown in studies looking at conditions leading to sleep fragmentation and secondary sleep restriction. Even if noise has been used experimentally to induce these fragmentations, our understanding of the effects of chronic noise and the role of intermittent versus continuous noises on health as example is still limited and justifies further investigations.

  References Top

1.Muzet A. The effects of noise on sleep and their possible repercussions on health. Med Sci (Paris). 2006;22:973-7.  Back to cited text no. 1      
2.Ikegami K, Ogyu S, Arakomo Y, Suzuki K, Mafune K, Hiro H, et al. Recovery of cognitive performance and fatigue after one night of sleep deprivation. J Occup Health 2009;51:412-22.   Back to cited text no. 2      
3.Babson KA, Trainor CD, Feldner MT, Blumenthal H. A test of the effects of acute sleep deprivation on general and specific self-reported anxiety and depressive symptoms: An experimental extension. J Behav Ther Exp Psychiatry 2010;41:297-303.  Back to cited text no. 3      
4.Lim J, Tan JC, Parimal S, Dinges DF, Chee MW. Sleep deprivation impairs object-selective attention: A view from the ventral visual cortex. PLoS One 2010;5:e9087.  Back to cited text no. 4      
5.Belenky G, Wesensten NJ, Thorne DR, Thomas ML, Sing HC, Redmond DP, et al. Patterns of performance degradation and restoration during sleep restriction and subsequent recovery: A sleep dose-response study. J Sleep Res 2003;12:1-12.  Back to cited text no. 5      
6.Dinges DF, Pack F, Williams K, Gillen KA, Powell JW, Ott GE, et al. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4-5h per night. Sleep 1997;20:267-77.  Back to cited text no. 6      
7.Van Dongen HP, Maislin G, Mullington JM, Dinges DF. The cumulative cost of additional wakefulness: Dose-response effects on neurobehavioral functions and sleep physiology from chronic sleep restriction and total sleep deprivation. Sleep 2003;26:117-26.  Back to cited text no. 7      
8.Bonnet MH, Arand DL. Clinical effects of sleep fragmentation versus sleep deprivation. Sleep Med Rev 2003;7:297-310.  Back to cited text no. 8      
9.Kim Y, Laposky AD, Bergmann BM, Turek FW. Repeated sleep restriction in rats leads to homeostatic and allostatic responses during recovery sleep. Proc Natl Acad Sci U S A 2007;104:10697-702.  Back to cited text no. 9      
10.Meerlo P, Sgoifo A, Suchecki D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev 2008;12:197-210.  Back to cited text no. 10      
11.Ising H, Babisch W, Kruppa B. Noise-induced endocrine effects and cardiovascular risk. Noise Health 1999;1:37-48.  Back to cited text no. 11  [PUBMED]  Medknow Journal  
12.Muzet A. Environmental noise, sleep, and health. Sleep Med Rev 2007;11:135-42.  Back to cited text no. 12      
13.Sateia MJ, ed. International Classification of Sleep Disorders, 2nd ed. American Academy of Sleep Medicine. Westchester, IL: American Academy of Sleep Medicine. 2005.   Back to cited text no. 13      
14.Muzet A. Adult′s sleep physiology, sleep quality, and indicators of disturbed sleep. Short term effects on health of disturbed sleep in adults. WHO Technical meeting on sleep and health. Bonn, Germany: January 22-24, 2004.  Back to cited text no. 14      
15.Kryger MH, Mignot E, Orr WC, Ryan D, Walsh JK. National Sleep Foundation. Sleep in America Poll, 2002.   Back to cited text no. 15      
16.National Center on Sleep Disorders Research. National sleep disorders research plan. Bethesda, MD. NIH Publication No. 03-5209 July 2003.  Back to cited text no. 16      
17.Berglund B, Lindvall T, Schwela DH. Guidelines for Community Noise. World Health Organization 1999. Available from: http://www.who.int/docstore/peh/noise/guidelines2.html . [Accessed on 2010 March 28].  Back to cited text no. 17      
18.Muzet A, Weber LD, Di Nisi J, Ehrhart J. Comparison of cardiovascular reactivity to noise during waking and sleep. National Center for Scientific Research Center for Bioclimatic studies. Convention No 82243, 1985.   Back to cited text no. 18      
19.Muzet A, Ehrhart J, Eschenlauer R, Lienhard JP. Habituation and age differences of cardiovascular responses to noise during sleep. In Sleep 1980;212-5.  Back to cited text no. 19      
20.Ohrstrom E, Bjorkman M. Effects of noise-disturbed sleep- a laboratory study on habituation and subjective noise sensitivity. J Sound Vib 1988;122:277-90.  Back to cited text no. 20      
21.Stansfeld SA, Matheson MP. Noise pollution: Non-auditory effects on health. Br Med Bull 2003;68:243-57.  Back to cited text no. 21      
22.Vallet M, Gagneux J, Clairet JM, Laurens JF, Letisserand D.. Heart rate reactivity to aircraft noise after a long-term exposure. Noise as a Public Health Problem. In: Rossi G, editor. Milan: Centro Recherche e Studio Amplifon; 1983. p. 965-75.  Back to cited text no. 22      
23.Griefahn B. Sleep disturbances related to environmental noise. Noise Health 2002;4:57-60.  Back to cited text no. 23  [PUBMED]  Medknow Journal  
24.Rabat A, Bouyer JJ, Aran JM, Le Moal M, Mayo W. Chronic exposure to an environmental noise permanently disturbs sleep in rats: Inter-individual vulnerability. Brain Res 2005;1059:72-82.  Back to cited text no. 24      
25.Health Council of the Netherlands. The Influence of Night-time Noise on Sleep and Health. The Hague: Health Council of the Netherlands, publication no. 2004/14E. ISBN 90-5549-550-6; 2004.  Back to cited text no. 25      
26.Townsend RE, Johnson LC, Muzet A. Effects of long term exposure to tone pulse noise on human sleep. Psychophysiology 1973;10:369-76.  Back to cited text no. 26      
27.Claparθde E. La fonction du sommeil. Revista di Scienza 1908;2:141-58.   Back to cited text no. 27      
28.National Center on Sleep Disorders Research. National sleep disorders research plan. NIH Publication No. 03-5209; 2003  Back to cited text no. 28      
29.Lavie, Peretz, Atul Malhotra, and Giora Pillar. Sleep Disorders: Diagnosis, Management and Treatment. A handbook for clinicians. In: Lavie P, Pillar G, Malhotra A, editors. London: Martin Dunitz; 2002.   Back to cited text no. 29      
30.Axelrod J, Reisine TD. Stress hormones: Their interaction and regulation. Science 1984;224:452-9.  Back to cited text no. 30      
31.Johnson EO, Kamilaris TC, Chrousos GP, Gold PW. Mechanisms of stress: A dynamic overview of hormonal and behavioral homeostasis. Neurosci Biobehav Rev 1992;16:115-30.  Back to cited text no. 31      
32.Selye H. A syndrome produced by diverse nocuous agents: 1936. J Neuropsychiatry Clin Neurosci 1998;10:230-1.  Back to cited text no. 32      
33.Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999;354:1435-9.  Back to cited text no. 33      
34.Born J, Muth S, Fehm HL. The significance of sleep onset and slow wave sleep for nocturnal release of growth hormone and cortisol. Psychoneuroendocrinology 1988;13:233-43.  Back to cited text no. 34      
35.Born J, Kern W, Bieber K, Fehm-Wolfsdorf G, Schiebe M, Fehm HL. Night-time plasma cortisol secretion is associated with specific sleep stages. Biol Psychiatry 1986;21:1415-24.  Back to cited text no. 35      
36.Spath-Schwalbe E, Gofferje M, Kern W, Born J, Fehm HL. Sleep disruption alters nocturnal ACTH and cortisol secretory patterns. Biol Psychiatry 1991;29:575-84.  Back to cited text no. 36      
37.Cooper BG, White JE, Ashworth LA, Alberti KG, Gibson GJ. Hormonal and metabolic profiles in subjects wth obstructive sleep apnea syndrome and the acute effects of nasal continuous positive airway pressure (CPAP) treatment. Sleep 1995;18:172-9.   Back to cited text no. 37      
38.Spiegel K, Follenius M, Krieger J, Sforza E, Brandenberger G. Prolactin secretion during sleep in obstructive sleep apnoea patients. J Sleep Res 1995;4:56-62.  Back to cited text no. 38      
39.Gary KA, Winokur A, Douglas SD, Kapoor S, Zaugg L, Dinges DF. Total sleep deprivation and the thyroid axis: Effects of sleep and waking activity. Aviat Space Environ Med 1996;67:513-9.  Back to cited text no. 39      
40.Bonnet MH. Sleep deprivation. Principles and practice of sleep medicine. In: Kryger M, Roth T, Dement WC, editors. Philadelphia: Saunders; 2000. p. 53-71.  Back to cited text no. 40      
41.Akerstedt T. Altered sleep/wake patterns and circadian rhythms: Laboratory and field studies of sympathoadrenomedullary and related variables. Acta Physiol Scand Suppl 1979;469:1-48.  Back to cited text no. 41      
42.Parker DC, Rossman LG, Kripke DF, Hershman JM, GibsonW, David C, Wilson K, Pekary. E. Endocrine rhythms across sleep-wake cycles in normal young men under basal conditions. Physiology in sleep. In: Orem J, Barnes CD, editors. New York: Academic Press; 1980. p. 146-80.  Back to cited text no. 42      
43.Sforza E, Chapotot F, Lavoie S, Roche F, Pigeau R, Buguet A. Heart rate activation during spontaneous arousals from sleep: Effect of sleep deprivation. Clin Neurophysiol 2004;115:2442-51.  Back to cited text no. 43      
44.Guilleminault C, Abad VC, Philip P, Stoohs R. The effect of CNS activation versus EEG arousal during sleep on heart rate response and daytime tests. Clin Neurophysiol 2006;117:731-9.  Back to cited text no. 44      
45.Stepanski E, Lamphere J, Roehrs T, Zorick F, Roth T. Experimental sleep fragmentation in normal subjects. Int J Neurosci 1987;33:207-14.  Back to cited text no. 45      
46.Martin SE, Wraith PK, Deary IJ, Douglas NJ. The effect of nonvisible sleep fragmentation on daytime function. Am J Respir Crit Care Med 1997;155:1596-601.  Back to cited text no. 46      
47.Martine SE, Brander PE, Deary IJ, Douglas NJ. The effect of clustered versus regular sleep fragmentation on daytime function. J Sleep Res 1999;8:305-12.  Back to cited text no. 47      
48.Bonnet MH. Performance and sleepiness following moderate sleep disruption and slow wave sleep deprivation. Physiol Behav 1986;37:915-8.  Back to cited text no. 48      
49.Bonnet MH. Effect of sleep disruption on sleep, performance, and mood. Sleep 1985;8:11-9.  Back to cited text no. 49      
50.Levine B, Roehrs T, Stepanski E, Zorick F, Roth T. Fragmenting sleep diminishes its recuperative value. Sleep 1987;10:590-9.  Back to cited text no. 50      
51.Bonnet MH. Performance and sleepiness as a function of frequency and placement of sleep disruption. Psychophysiology 1986;23:263-71.  Back to cited text no. 51      
52.Cohen-Zion M, Stepnowsky C, Marler, Shochat T, Kripke DF, Ancoli-Israel S. Changes in cognitive function associated with sleep disordered breathing in older people. J Am Geriatr Soc 2001;49:1622-7.  Back to cited text no. 52      
53.Suratt PM, Barth JT, Diamond R, D′Andrea L, Nikova M,Perriello VA Jr, et al. Reduced time in bed and obstructive sleep-disordered breathing in children are associated with cognitive impairment. Pediatrics 2007;119:320-9.  Back to cited text no. 53      
54.Engleman H, Joffe D. Neuropsychological function in obstructive sleep apnea. Sleep Med Rev 1999;3:59-78.  Back to cited text no. 54      
55.Kim H, Dinges DF, Young T. Sleep-disordered breathing and psychomotor vigilance in a community-based sample. Sleep 2007;30:1309-16.  Back to cited text no. 55      
56.Sforza E, de Saint Hilaire Z, Pelissolo A, Rochat T, Ibanez V. Personality, anxiety and mood traits in patients with sleep-related breathing disorders: Effect of reduced daytime alertness. Sleep Med 2002;3:139-45.  Back to cited text no. 56      
57.Ulfberg J, Carter N, Edling C. Sleep-disordered breathing and occupational accidents. Scand J Work Environ Health 2000;26:237-42.  Back to cited text no. 57      

Correspondence Address:
Mia Zaharna
Stanford Sleep Medicine Center
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1463-1741.63205

Rights and Permissions

This article has been cited by
1 A Low-Stress Method for Determining Static and Dynamic Material Parameters for Vibration Isolation with the Use of VMQ Silicone
Krzysztof Nering, Konrad Nering
Materials. 2023; 16(8): 2960
[Pubmed] | [DOI]
2 Traffic noise in the bedroom in association with markers of obesity: a cross-sectional study and mediation analysis of the respiratory health in Northern Europe cohort
Triin Veber, Andrei Pyko, Hanne Krage Carlsen, Mathias Holm, Thorarinn Gislason, Christer Janson, Ane Johannessen, Johan Nilsson Sommar, Lars Modig, Eva Lindberg, Vivi Schlünssen, Karolin Toompere, Hans Orru
BMC Public Health. 2023; 23(1)
[Pubmed] | [DOI]
3 Impact of aeroplane noise on mental and physical health: a quasi-experimental analysis
Scarlett Sijia Wang, Sherry Glied, Sharifa Williams, Brian Will, Peter Alexander Muennig
BMJ Open. 2022; 12(5): e057209
[Pubmed] | [DOI]
4 How Noise Can Influence Experience-Based Decision-Making under Different Types of the Provided Information
Youyu Sheng, Di Dong, Gang He, Jingyu Zhang
International Journal of Environmental Research and Public Health. 2022; 19(16): 10445
[Pubmed] | [DOI]
5 Data fusion of mobile and environmental sensing devices to understand the effect of the indoor environment on measured and self-reported sleep quality
Hagen Fritz, Kerry Kinney, Congyu Wu, David M. Schnyer, Zoltan Nagy
Building and Environment. 2022; : 108835
[Pubmed] | [DOI]
6 Exposure to fine particulate matter constituents and cognitive function performance, potential mediation by sleep quality: A multicenter study among Chinese adults aged 40–89 years
Rubing Pan, Yi Zhang, Zhiwei Xu, Weizhuo Yi, Feng Zhao, Jian Song, Qinghua Sun, Peng Du, Jianlong Fang, Jian Cheng, Yingchun Liu, Chen Chen, Yifu Lu, Tiantian Li, Hong Su, Xiaoming Shi
Environment International. 2022; 170: 107566
[Pubmed] | [DOI]
7 The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa
Leonard Ngarka, Joseph Nelson Siewe Fodjo, Esraa Aly, Willias Masocha, Alfred K. Njamnshi
Frontiers in Immunology. 2022; 12
[Pubmed] | [DOI]
8 Prioritization of Noise Control Methods by the Analytical Hierarchy Process (AHP) in a Battery Factory
Ayub Abdollahzade Sani, Rasoul Yarahmadi, Jamileh Abolghasemi, Mehran Firouzbakhsh, Jafar Besharati, Iraj Alimohammadi
Journal of Occupational Hygiene Engineering. 2021; 8(1): 65
[Pubmed] | [DOI]
9 Prevalence of poor psychiatric status and sleep quality among frontline healthcare workers during and after the COVID-19 outbreak: a longitudinal study
Yifang Zhou, Hailong Ding, Yifan Zhang, Baoyan Zhang, Yingrui Guo, Teris Cheung, Brian J. Hall, Tieying Shi, Yu-Tao Xiang, Yanqing Tang
Translational Psychiatry. 2021; 11(1)
[Pubmed] | [DOI]
10 Variable and consistent traffic noise negatively affect the sleep behavior of a free-living songbird
Melissa L. Grunst, Andrea S. Grunst, Rianne Pinxten, Marcel Eens
Science of The Total Environment. 2021; 778: 146338
[Pubmed] | [DOI]
11 Public interest and awareness regarding general health, sleep quality and mental wellbeing during the early COVID-19 pandemic period: An exploration using Google Trends
Patrick Lemoine, David Ebert, Yoshihiko Koga, Claire Bertin
Sleep Epidemiology. 2021; : 100017
[Pubmed] | [DOI]
12 Noncontact Sleep Monitoring System Under a Mattress
Xu Jiao, Xiaosha Wang, Xiaohang Wang, Zipeng Liu
IEEE Access. 2021; 9: 111203
[Pubmed] | [DOI]
13 The Process of Developing a Sleep Health Improvement Plan: a Lab-Based Model of Self-Help Behavior
Leah A. Irish, Allison C. Veronda, Amanda E. van Lamsweerde, Michael P. Mead, Stephen A. Wonderlich
International Journal of Behavioral Medicine. 2021; 28(1): 96
[Pubmed] | [DOI]
14 Impact of measuring microphone location on the result of environmental noise assessment
Adam Zagubien, Katarzyna Wolniewicz
Applied Acoustics. 2021; 172: 107662
[Pubmed] | [DOI]
15 Associations between indoor soundscapes, building services and window opening behaviour during the COVID-19 lockdown
Simone Torresin, Rossano Albatici, Francesco Aletta, Francesco Babich, Tin Oberman, Jian Kang
Building Services Engineering Research and Technology. 2021; : 0143624421
[Pubmed] | [DOI]
16 Racial/Ethnic Differences in Actigraphy, Questionnaire, and Polysomnography Indicators of Healthy Sleep: The Multi-Ethnic Study of Atherosclerosis
Joon Chung, Matthew Goodman, Tianyi Huang, Meredith L Wallace, Dayna A Johnson, Suzanne Bertisch, Susan Redline
American Journal of Epidemiology. 2021;
[Pubmed] | [DOI]
17 Central nervous system depressant activity of Jatamansi (Nardostachys jatamansi DC.) rhizome
Kalpesh Panara, Mukeshkumar Nariya, Nishteswar Karra
AYU (An international quarterly journal of research in Ayurveda). 2020; 41(4): 250
[Pubmed] | [DOI]
18 Effect of smoke exposure on young adults' sleep quality
Allison C. Veronda, Leah A. Irish, Douglas L. Delahanty
Nursing & Health Sciences. 2020; 22(1): 57
[Pubmed] | [DOI]
19 Alcohol consumption and incidence of sleep disorder: A systematic review and meta-analysis of cohort studies
Nan Hu, Yibin Ma, Jie He, Lichen Zhu, Shiyi Cao
Drug and Alcohol Dependence. 2020; 217: 108259
[Pubmed] | [DOI]
20 Air pollution exposure and adverse sleep health across the life course: A systematic review
Jianghong Liu, Tina Wu, Qisijing Liu, Shaowei Wu, Jiu-Chiuan Chen
Environmental Pollution. 2020; 262: 114263
[Pubmed] | [DOI]
21 The role of aircraft noise annoyance and noise sensitivity in the association between aircraft noise levels and hypertension risk: Results of a pooled analysis from seven European countries
Clémence Baudin, Marie Lefèvre, Wolfgang Babisch, Ennio Cadum, Patricia Champelovier, Konstantina Dimakopoulou, Danny Houthuijs, Jacques Lambert, Bernard Laumon, Göran Pershagen, Stephen Stansfeld, Venetia Velonaki, Anna Hansell, Anne-Sophie Evrard
Environmental Research. 2020; 191: 110179
[Pubmed] | [DOI]
22 Hydroalcoholic Extract of Cuscuta Epithymum Enhances Pentobarbitalinduced Sleep: Possible Involvement of GABAergic System
Fatemeh Forouzanfar, Mohammad M. Vahedi, Azita Aghaei , Hassan Rakhshandeh
Current Drug Discovery Technologies. 2020; 17(3): 332
[Pubmed] | [DOI]
23 Night-time Noise Levels and Patients’ Sleep Experiences in a Medical Assessment Unit in Northern England
Felicity Astin, John Stephenson, Jonathan Wakefield, Ben Evans, Priyanka Rob, Garside Joanna, Emma Harris
The Open Nursing Journal. 2020; 14(1): 80
[Pubmed] | [DOI]
24 A workshop report on the causes and consequences of sleep health disparities
Chandra L Jackson, Jenelle R Walker, Marishka K Brown, Rina Das, Nancy L Jones
Sleep. 2020; 43(8)
[Pubmed] | [DOI]
25 Sleep, mental health and wellbeing among fathers of infants up to one year postpartum: A scoping review
Karen Wynter, Lauren M. Francis, Richard Fletcher, Nyanda McBride, Eileen Dowse, Nathan Wilson, Laura Di Manno, Samantha Teague, Jacqui A. Macdonald
Midwifery. 2020; 88: 102738
[Pubmed] | [DOI]
26 Effect of a Quality Improvement Project to Reduce Noise in a Pediatric Unit
Maher Soubra, Yara Abou Harb, Sara Hatoum, Nadine Yazbeck, Mirna Khoury, Elie Bou Mansour, Lina Kurdahi Badr
MCN: The American Journal of Maternal/Child Nursing. 2018; 43(2): 83
[Pubmed] | [DOI]
27 Long-Term Exposure to Transportation Noise in Relation to Development of Obesity—a Cohort Study
Andrei Pyko, Charlotta Eriksson, Tomas Lind, Natalya Mitkovskaya, Alva Wallas, Mikael Ögren, Claes-Göran Östenson, Göran Pershagen
Environmental Health Perspectives. 2017; 125(11)
[Pubmed] | [DOI]
28 Household Disorder, Network Ties, and Social Support in Later Life
Erin York Cornwell
Journal of Marriage and Family. 2016; 78(4): 871
[Pubmed] | [DOI]
29 Proximity to Traffic, Ambient Air Pollution, and Community Noise in Relation to Incident Rheumatoid Arthritis
Anneclaire J. De Roos, Mieke Koehoorn, Lillian Tamburic, Hugh W. Davies, Michael Brauer
Environmental Health Perspectives. 2014; 122(10): 1075
[Pubmed] | [DOI]
30 Wind Turbines: A Different Breed of Noise?
Nate Seltenrich
Environmental Health Perspectives. 2014; 122(1): A20
[Pubmed] | [DOI]
31 The role of sleep hygiene in promoting public health: A review of empirical evidence
Leah A. Irish,Christopher E. Kline,Heather E. Gunn,Daniel J. Buysse,Martica H. Hall
Sleep Medicine Reviews. 2014;
[Pubmed] | [DOI]
32 2Loud?: Community mapping of exposure to traffic noise with mobile phones
Simone Leao,Kok-Leong Ong,Adam Krezel
Environmental Monitoring and Assessment. 2014;
[Pubmed] | [DOI]
33 Potentiating effects of Lactuca sativa on pentobarbital-induced sleep
Ghorbani, A. and Rakhshandeh, H. and Sadeghnia, H.R.
Iranian Journal of Pharmaceutical Research. 2013; 12(2): 401-406
34 Animal models of sleep disorders
Toth, L.A. and Bhargava, P.
Comparative Medicine. 2013; 63(2): 91-104
35 The impact of sleep complaints on physical health and immune outcomes in rescue workers: A 1-year prospective study
Irish, L.A. and Dougall, A.L. and Delahanty, D.L. and Hall, M.H.
Psychosomatic Medicine. 2013; 75(2): 196-201
36 A 24-hour Approach to the Study of Health Behaviors: Temporal Relationships Between Waking Health Behaviors and Sleep
Leah A. Irish,Christopher E. Kline,Scott D. Rothenberger,Robert T. Krafty,Daniel J. Buysse,Howard M. Kravitz,Joyce T. Bromberger,Huiyong Zheng,Martica H. Hall
Annals of Behavioral Medicine. 2013;
[Pubmed] | [DOI]
37 The Impact of Sleep Complaints on Physical Health and Immune Outcomes in Rescue Workers
Leah A. Irish,Angela L. Dougall,Douglas L. Delahanty,Martica H. Hall
Psychosomatic Medicine. 2013; 75(2): 196
[Pubmed] | [DOI]
38 Traffic noise and blood pressure in low-socioeconomic status, African-American urban schoolchildren
Goran Belojevic,Gary W. Evans
The Journal of the Acoustical Society of America. 2012; 132(3): 1403
[Pubmed] | [DOI]
39 Diagnostic Yield of Sleep and Sleep Deprivation on the EEG in Epilepsy
Madeleine M. Grigg-Damberger,Nancy Foldvary-Schaefer
Sleep Medicine Clinics. 2012; 7(1): 91
[Pubmed] | [DOI]
40 Estimating health related costs and savings from balcony acoustic design for road traffic noise
Daniel A. Naish,Andy C.C. Tan,F. Nur Demirbilek
Applied Acoustics. 2012; 73(5): 497
[Pubmed] | [DOI]
41 Impact of the bed system on sleep: A pilot trial [Einfluss des Bettsystems auf den Schlaf: Eine Pilotstudie]
Fietze, I. and Garcia, C. and Glos, M. and Zimmermann, S. and Frohberg, D. and Paritschkow, S. and Schmauder, M. and Rödel, H. and Zosel, J. and Penzel, T.
Somnologie. 2012; 16(4): 263-270
42 Effects of environmental noise on sleep
Hume, K.I. and Brink, M. and Basner, M.
Noise and Health. 2012; 14(61): 297-302
43 Traffic noise and blood pressure in low-socioeconomic status, African-American urban schoolchildren
Belojevic, G. and Evans, G.W.
Journal of the Acoustical Society of America. 2012; 132(3): 1403-1406
44 Estimating health related costs and savings from balcony acoustic design for road traffic noise
Naish, D.A. and Tan, A.C.C. and Nur Demirbilek, F.
Applied Acoustics. 2012; 73(5): 497-507
45 Influence of environmental noise on sleep quality and sleeping disorders - Implications for health [Einfluss von umweltlärm auf schlafqualität und schlafstörungen und auswirkungen auf die gesundheit]
Kohlhuber, M. and Bolte, G.
Somnologie. 2012; 16(1): 10-16
46 Diagnostic yield of sleep and sleep deprivation on the EEG in epilepsy
Grigg-Damberger, M.M. and Foldvary-Schaefer, N.
Sleep Medicine Clinics. 2012; 7(1): 91-98
47 Objective assessment of total noise exposure over 24 hours: A cross-sectional study in Bavaria [Objektive Bestimmung der 24-Stunden-Gesamtlärmbelastung: eine Querschnittsstudie in Bayern]
Weinmann, T. and Sárközi, E. and Praml, G. and Von Kries, R. and Ehrenstein, V. and Nowak, D. and Radon, K.
Gesundheitswesen. 2012; 74(11): 710-715
48 Einfluss von Umweltlärm auf Schlafqualität und Schlafstörungen und Auswirkungen auf die Gesundheit
M. Kohlhuber,G. Bolte
Somnologie - Schlafforschung und Schlafmedizin. 2012; 16(1): 10
[Pubmed] | [DOI]
49 Einfluss des Bettsystems auf den Schlaf
I. Fietze,C. Garcia,M. Glos,S. Zimmermann,D. Frohberg,S. Paritschkow,M. Schmauder,H. Rödel,J. Zosel,T. Penzel
Somnologie - Schlafforschung und Schlafmedizin. 2012; 16(4): 263
[Pubmed] | [DOI]
50 Einfluss von Umweltlärm auf Schlafqualität und Schlafstörungen und Auswirkungen auf die Gesundheit
M. Kohlhuber,G. Bolte
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 2011; 54(12): 1319
[Pubmed] | [DOI]
51 Influence of environmental noise on sleep quality and sleeping disorders-implications for health [Einfluss von umweltlärm auf schlafqualität und schlafstörungen und auswirkungen auf die gesundheit]
Kohlhuber, M. and Bolte, G.
Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz. 2011; 54(12): 1319-1324