Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded22    
    Comments [Add]    
    Cited by others 8    

Recommend this journal


Year : 2014  |  Volume : 16  |  Issue : 73  |  Page : 388--399

Railway noise annoyance: Exposure-response relationships and testing a theoretical model by structural equation analysis

1 Department of Flight Physiology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
2 Department of Earth System Modelling, Institute of Atmospheric Physics, German Aerospace Center (DLR), Oberpfaffenhofen, Germany

Correspondence Address:
Dr. Sibylle Pennig
German Aerospace Center (DLR), Institute of Aerospace Medicine, 51170 Cologne
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1463-1741.144417

Rights and Permissions

In some regions the exposure to railway noise is extremely concentrated, which may lead to high residential annoyance. Nonacoustical factors contribute to these reactions, but there is limited evidence on the interrelations between the nonacoustical factors that influence railway noise annoyance. The aims of the present study were (1) to examine exposure-response relationships between long-term railway noise exposure and annoyance in a region severely affected by railway noise and (2) to determine a priori proposed interrelations between nonacoustical factors by structural equation analysis. Residents (n = 320) living close to railway tracks in the Middle Rhine Valley completed a socio-acoustic survey. Individual noise exposure levels were calculated by an acoustical simulation model for this area. The derived exposure-response relationships indicated considerably higher annoyance at the same noise exposure level than would have been predicted by the European Union standard curve, particularly for the night-time period. In the structural equation analysis, 72% of the variance in noise annoyance was explained by the noise exposure (Lden ) and nonacoustical variables. The model provides insights into several causal mechanisms underlying the formation of railway noise annoyance considering indirect and reciprocal effects. The concern about harmful effects of railway noise and railway traffic, the perceived control and coping capacity, and the individual noise sensitivity were the most important factors that influence noise annoyance. All effects of the nonacoustical factors on annoyance were mediated by the perceived control and coping capacity and additionally proposed indirect effects of the theoretical model were supported by the data.


Print this article     Email this article