Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2912    
    Printed87    
    Emailed3    
    PDF Downloaded27    
    Comments [Add]    

Recommend this journal

 

 ARTICLE
Year : 2014  |  Volume : 16  |  Issue : 73  |  Page : 400--409

Noise exposure immediately activates cochlear mitogen-activated protein kinase signaling


1 Department of Otolaryngology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
2 Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 4820, USA
3 Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221; Division of Applied Research and Technology, National Institute for Occupational Safety and Health, Department of Health and Human Services, Cincinnati, OH 45226, USA

Correspondence Address:
Dr. Kumar N Alagramam
Department of Otolaryngology, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, OH 44106
USA
Login to access the Email id

Source of Support: This work was supported by a grant (R21-DC07866) from the NIH to K.N.A., Conflict of Interest: None


DOI: 10.4103/1463-1741.144418

Rights and Permissions

Noise-induced hearing loss (NIHL) is a major public health issue worldwide. Uncovering the early molecular events associated with NIHL would reveal mechanisms leading to the hearing loss. Our aim is to investigate the immediate molecular responses after different levels of noise exposure and identify the common and distinct pathways that mediate NIHL. Previous work showed mice exposed to 116 decibels sound pressure level (dB SPL) broadband noise for 1 h had greater threshold shifts than the mice exposed to 110 dB SPL broadband noise, hence we used these two noise levels in this study. Groups of 4-8-week-old CBA/CaJ mice were exposed to no noise (control) or to broadband noise for 1 h, followed by transcriptome analysis of total cochlear RNA isolated immediately after noise exposure. Previously identified and novel genes were found in all data sets. Following exposure to noise at 116 dB SPL, the earliest responses included up-regulation of 243 genes and down-regulation of 61 genes, while a similar exposure at 110 dB SPL up-regulated 155 genes and down-regulated 221 genes. Bioinformatics analysis indicated that mitogen-activated protein kinase (MAPK) signaling was the major pathway in both levels of noise exposure. Nevertheless, both qualitative and quantitative differences were noticed in some MAPK signaling genes, after exposure to different noise levels. Cacna1b , Cacna1g , and Pla2g6 , related to calcium signaling were down-regulated after 110 dB SPL exposure, while the fold increase in the expression of Fos was relatively lower than what was observed after 116 dB SPL exposure. These subtle variations provide insight on the factors that may contribute to the differences in NIHL despite the activation of a common pathway.






[FULL TEXT] [PDF]*


        
Print this article     Email this article