et al.">

  Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
Email Alert *
Add to My List *
* Registration required (free)  


 Article Access Statistics
    PDF Downloaded26    
    Comments [Add]    

Recommend this journal


  Table of Contents    
Year : 2015  |  Volume : 17  |  Issue : 78  |  Page : 382-383
Comment on "Elucidating the relationship between noise sensitivity and personality" by Shepherd et al.

Faculty of Medicine, Medical University of Plovdiv, 15-A Vasil Aprilov Boulevard, Plovdiv - 4002, Bulgaria

Click here for correspondence address and email
Date of Web Publication10-Sep-2015
How to cite this article:
Dzhambov AM. Comment on "Elucidating the relationship between noise sensitivity and personality" by Shepherd et al. Noise Health 2015;17:382-3

How to cite this URL:
Dzhambov AM. Comment on "Elucidating the relationship between noise sensitivity and personality" by Shepherd et al. Noise Health [serial online] 2015 [cited 2023 Dec 6];17:382-3. Available from:

I read with particular interest the paper of Shepherd et al. [1] Their work is commendable as a stand-alone research and I think that one of its strengths was demonstrating and raising the key issues about our tentative operationalization of noise sensitivity (NS) and the absence of knowledge of its nature and origins [1] on which I feel compelled to elaborate further. While I will do so in a full-length paper describing the theoretical justification, here I present my basic arguments on the matter and I would appreciate the kind response and comment of Dr. Shepherd and his colleagues.

One problem of our operationalization of NS is the lack of heuristically derived first-person data and the unreliability of the second-person data that we operate with, that is, "noise sensitivity … [is] one of those terms most of us think we understand, but do not explicitly define except by default of the way we measure it." [2] What we label as NS is just a psychometric construct with unknown corresponding psychobiological counterparts. A limitation of most psychometric questionnaires is that they are hypothesized to assess psychological phenomena that we cannot observe directly. While in clinical medicine, for example, we can measure hearing impairment through audiometry, NS questionnaires have only face validity; furthermore, proving convergent/discriminant validity of these psychometric instruments by correlating them with others does not overcome the validity issue; that is a case that can be made and extended to psychiatric validity in general. [3]

Another insightful paper of Shepherd et al. [4] discusses some recent developments regarding the quest of overcoming these limitations by identifying the electrophysiological substrate of NS. They reviewed four studies of the electrophysiological correlates of NS and underscored the viability of new approaches to study NS, with studies focusing on brain dynamics being scant. Lee et al. [5] made a qualitative inquiry into noise annoyance and sensitivity by investigating the corresponding changes in alpha rhythms and found alpha desynchronization when the participants were exposed to extremely annoying sounds. Heinonen-Guzejev et al. [6] took a different approach suggesting that NS influenced mismatch negativity response. However, they did not recognize the quintessential limitation of NS as a construct, namely, its lack of objective validity. The best one could hope is to establish the underlying physiological substrate of this construct but whether the latter represents NS as it was operationalized would remain unclear. On the other hand, if we first make qualitative inquiries into the psychobiological processes underlying these neural response patterns and then cross-validate these qualitative first-person experiences with objective brain dynamics data, it is to be expected that the validity of a NS questionnaire developed on this basis will be superior to questionnaires currently in use. Functional neuroimaging and electroencephalography might help to individualize psychometrical diagnostics by integrating neurobiology and psychoacoustics. A neuroscientific program known as neurophenomenology [7] might be capable of addressing the conflicting findings about NS that Shepherd et al. [1] and others have observed and allow us to construct a "gold standard" NS questionnaire. The basic concept of incorporating phenomenological investigation into neurodynamical studies is to transcend the conceptual, epistemological, and methodological gaps between subjective experiences and neural activity. We could reveal the invariant structures within and across different experiences that would otherwise have been inconceivable. Thus, the interpretation of neurobiological data would be facilitated, accounting for the fluctuations of the subjective cognitive context. [7],[8] The neurophenomenological approach could serve as a starting point to generate hypotheses that would then be used to construct NS questionnaires with high validity. According to it once we link the psychometric dimensions of NS to functional changes in the activation of specific brain regions, we will no longer need these costly technological procedures to monitor the effectiveness of various interventions aiming at assessing people's NS but will rather use the newly validated psychometric instruments.

Finally, previous research has not only paid little attention to the origins and true nature of NS as noted by Shepherd et al. [1] but has also failed to conceive it as a modifiable entity. The idea of attenuating the high NS of vulnerable individuals is very appealing. Increasing individual awareness of our own experiences by being trained in phenomenological inquiry might allow us to modify the nature of these experiences and to stabilize and reshape them. [7] For example, the awareness of pharmacologically resistant epileptic patients of their preseizure experiential symptoms allowed them to preemptively interrupt the process and to avoid the seizure through motor, sensory, vegetative and mental countermeasures adopted once the patients relived their seizure. [9] If people are trained to direct their attention inward to their own perception of noise, they might be able to self-modify their NS. Our target structures regarding NS might be in the limbic region, in particular the amygdala and the hippocampus that are involved in noise experiences and can modulate cortical plasticity and activity. [10] In animal experiments, based on the emotional or motivational state of the animal, a regulation of noise processing at an early stage of the ascending auditory pathway is possible via the thalamo-amygdala-collicular feedback circuit. [11] In humans, the degree of amygdalar activation could be voluntarily modified in both positive and negative directions using emotional regulation strategies (for a review, see [12] ). As a result, we might be able to exploit our evolutionary adopted self-regulatory faculties for maintaining social, emotional, and physiological stabilities. Therefore, it is quite encouraging to see that researchers acknowledge the importance of understanding the nature of NS. [1]

Financial support and sponsorship


Conflicts of interest

There are no conflicts of interest.

  References Top

Shepherd D, Heinonen-Guzejev M, Hautus MJ, Heikkilä K. Elucidating the relationship between noise sensitivity and personality. Noise Health 2015;17:165-71.  Back to cited text no. 1
[PUBMED]  Medknow Journal  
Job RF. Noise sensitivity as a factor influencing human reaction to noise. Noise Health 1999;1:57-68.  Back to cited text no. 2
Stoyanov DS, Machamer PK, Schaffner KF. In quest for scientific psychiatry: Toward bridging the explanatory gap. Philos Psychiatry Psychol 2009;20:261-73.  Back to cited text no. 3
Shepherd D, Hautus MJ, Lee J, Mulgrave J.Four Electrophysiological Studies into Noise Sensitivity. Melbourne: Internoise; 2014.  Back to cited text no. 4
Lee JS, Hautus MJ, Shepherd D. Neural Correlates of Noise Annoyance and Sensitivity. 21 st Biennial Conference of the Acoustical Society of New Zealand. Wellington, New Zealand: Acoustical Society of New Zealand; 2012. p. 4-11.  Back to cited text no. 5
Heinonen-Guzejev M, Klyuchko M, Heikkilä K, Spinosa V, Tervaniemi M, Brattico E. Noise Sensitivity Modulates the Auditory-Cortex Discrimination of Sound Feature Changes. Melbourne: Internoise; 2014.  Back to cited text no. 6
Thompson E, Lutz A, Cosmelli D. Neurophenomenology: An introduction for neurophilosophers. In: Brook A, Akins K, editors. Cognition and the Brain: The Philosophy and Neuroscience Movement. New York, Cambridge: Cambridge University Press; 2005. p. 40-97.  Back to cited text no. 7
Lutz A, Lachaux JP, Martinerie J, Varela FJ. Guiding the study of brain dynamics by using first-person data: Synchrony patterns correlate with ongoing conscious states during a simple visual task. Proc Natl Acad Sci U S A 2002;99:1586-91.  Back to cited text no. 8
Petitmengin C, Baulac M, Navarro V. Seizure anticipation: Are neurophenomenological approaches able to detect preictal symptoms? Epilepsy Behav 2006;9:298-306.  Back to cited text no. 9
Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res 2012;288:34-46.   Back to cited text no. 10
Marsh RA, Fuzessery ZM, Grose CD, Wenstrup JJ. Projection to the inferior colliculus from the basal nucleus of the amygdala. J Neurosci 2002;22:10449-60.  Back to cited text no. 11
Desbordes G, Negi LT, Pace TW, Wallace BA, Raison CL, Schwartz EL. Effects of mindful-attention and compassion meditation training on amygdala response to emotional stimuli in an ordinary, non-meditative state. Front Hum Neurosci 2012;6:292.  Back to cited text no. 12

Correspondence Address:
Angel M Dzhambov
Faculty of Medicine, Medical University of Plovdiv, 15-A Vasil Aprilov Boulevard, Plovdiv - 4002
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1463-1741.165069

Rights and Permissions