Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed4500    
    Printed96    
    Emailed0    
    PDF Downloaded31    
    Comments [Add]    

Recommend this journal

 

 ARTICLE
Year : 2016  |  Volume : 18  |  Issue : 81  |  Page : 62--77

Comparison of direct measurement methods for headset noise exposure in the workplace


1 Population Health Program, Faculty of Health Sciences, University of Ottawa, Ontario, Canada
2 School of Rehabilitation Sciences, Faculty of Health Sciences; School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, Ontario, Canada
3 School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, Ontario, Canada
4 School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ontario, Canada

Correspondence Address:
Christian Giguere
University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5
Canada
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/1463-1741.178479

Rights and Permissions

The measurement of noise exposure from communication headsets poses a methodological challenge. Although several standards describe methods for general noise measurements in occupational settings, these are not directly applicable to noise assessments under communication headsets. For measurements under occluded ears, specialized methods have been specified by the International Standards Organization (ISO 11904) such as the microphone in a real ear and manikin techniques. Simpler methods have also been proposed in some national standards such as the use of general purpose artificial ears and simulators in conjunction with single number corrections to convert measurements to the equivalent diffuse field. However, little is known about the measurement agreement between these various methods and the acoustic manikin technique. Twelve experts positioned circum-aural, supra-aural and insert communication headsets on four different measurement setups (Type 1, Type 2, Type 3.3 artificial ears, and acoustic manikin). Fit-refit measurements of four audio communication signals were taken under quiet laboratory conditions. Data were transformed into equivalent diffuse-field sound levels using third-octave procedures. Results indicate that the Type 1 artificial ear is not suited for the measurement of sound exposure under communication headsets, while Type 2 and Type 3.3 artificial ears are in good agreement with the acoustic manikin technique. Single number corrections were found to introduce a large measurement uncertainty, making the use of the third-octave transformation preferable.






[FULL TEXT] [PDF]*


        
Print this article     Email this article