Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded22    
    Comments [Add]    

Recommend this journal


Year : 2016  |  Volume : 18  |  Issue : 85  |  Page : 362--367

Arterial indices and serum cystatin C level in individuals with occupational wide band noise exposure

1 Department of Epidemiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
2 Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
3 Department of Radiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
4 Department of Aerospace Medicine, School of Aerospace Medicine, AJA University of Medical Sciences, Tehran, Iran
5 Department of Physiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran

Correspondence Address:
Dr. Benyamin Mousavi-Asl
Faculty of medicine, Tehran University of Medical Sciences, Tehran
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/1463-1741.195810

Rights and Permissions

Background: Chronic exposure to noise is known to cause a wide range of health problems including extracellular matrix (ECM) proliferation and involvement of cardiovascular system. There are a few studies to investigate noise-induced vascular changes using noninvasive methods. In this study we used carotid artery intima-media thickness (CIMT) and aortic augmentation as indices of arterial properties and cystatin C as a serum biomarker relating to ECM metabolism. Materials and Methods: Ninety-three male participants were included in this study from aeronautic technicians: 39 with and 54 without a history of wide band noise (WBN) exposure. For better discrimination, the participants were divided into the two age groups: <40 and >40 years old. Adjusted aortic augmentation index (AI) for a heart rate equal to 75 beats per minute (AIx@HR75) were calculated using pulse wave analysis (PWA). CIMT was measured in 54 participants who accepted to undergo Doppler ultrasonography. Serum cystatin C was also measured. Results: Among younger individuals the mean CIMT was 0.85 ± 0.09 mm and 0.75 ± 0.22 mm in the in the exposed and the control groups respectively. Among older individuals CIMT had a mean of 1.04 ± 0.22 mm vs. 1.00 ± 0.25 mm for the exposed vs. the control group. However, in both age groups the difference was not significant at the 0.05 level. A comparison of AIx@HR75 between exposure group and control group both in younger age group (5.46 ± 11.22 vs. 8.56 ± 8.66) and older age group (17.55 ± 10.07 vs. 16.61 ± 5.77) revealed no significant difference. We did not find any significant correlation between CIMT and AIx@HR75 in exposed group (r = 0.314, P value = 0.145) but the correlation was significant in control group (r = 0.455, P value = 0.019). Serum cystatin C level was significantly lower in individuals with WBN exposure compared to controls (441.10 ± 104.70 ng/L vs. 616.89 ± 136.14, P value < 0.001) both in younger and older groups. Conclusion: We could not find any evidence for the association of WBN exposure with arterial properties, but cystatin C was significantly lower in the exposed group.


Print this article     Email this article