Home Email this page Print this page Bookmark this page Decrease font size Default font size Increase font size
Noise & Health  
 CURRENT ISSUE    PAST ISSUES    AHEAD OF PRINT    SEARCH   GET E-ALERTS    
 
 Next article
 Previous article
Table of Contents

Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
Citation Manager
Access Statistics
Reader Comments
Email Alert *
Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed2971    
    Printed71    
    Emailed0    
    PDF Downloaded19    
    Comments [Add]    

Recommend this journal

 

 ORIGINAL ARTICLE
Year : 2017  |  Volume : 19  |  Issue : 88  |  Page : 149--153

Inhibitory effects of low decibel infrasound on the cardiac fibroblasts and the involved mechanism


1 Department of Cardiology, Third Hospital of Nanchang, Nanchang, China
2 Department of Radiology, Second Affiliated Hospital, Fourth Military Medical University, Xi’an, China
3 Department of Neurosurgery, Second Affiliated Hospital, Xi’an Medical University, Xi’an, China
4 Central Laboratory, Second Affiliated Hospital, Xi’an Medical University, Xi’an, China

Correspondence Address:
Jun Yu
Central Laboratory, Second Affiliated Hospital, Xi’an Medical University, Xi’an
China
Zhao-Hui Pei
Department of Cardiology, Third Hospital of Nanchang, Nanchang
China
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/nah.NAH_14_16

Rights and Permissions

Introduction: Infrasound is a mechanical vibration wave with frequency between 0.0001 and 20 Hz. It has been established that infrasound of 120 dB or stronger is dangerous to humans. However, the biological effects of low decibel infrasound are largely unknown. The purpose of this study was to investigate the effects of low decibel infrasound on the cardiac fibroblasts. Materials and Methods: The cardiac fibroblasts were isolated and cultured from Sprague–Dawley rats. The cultured cells were assigned into the following four groups: control group, angiotensin II (Ang II) group, infrasound group, and Ang II+infrasound group. The cell proliferation and collagen synthesis rates were evaluated by means of [3H]-thymidine and [3H]-proline incorporation, respectively. The levels of TGF-β were determined by enzyme-linked immunosorbent assay. Moreover, RNAi approaches were used for the analysis of the biological functions of miR-29a, and the phosphorylation status of Smad3 was detected using western blotting analysis. Results: The results showed that low decibel infrasound significantly alleviated Ang II-induced enhancement of cell proliferation and collagen synthesis. Discussion: Compared with the control, Ang II markedly decreased the expression of miR-29a levels and increased the secretion of TGF-β and phosphorylation of Smad3, which was partly reversed by the treatment with low decibel infrasound. Importantly, knockdown of miR-29a diminished the effects of infrasound on the cardiac fibroblasts. In conclusion, low decibel infrasound inhibits Ang II-stimulated cardiac fibroblasts via miR-29a targeting TGF-β/Smad3 signaling.






[FULL TEXT] [PDF]*


        
Print this article     Email this article