Noise Health Home 

[Download PDF]
Year : 2001  |  Volume : 3  |  Issue : 10  |  Page : 29--37

Evaluation of transient and distortion product otoacoustic emissions before and after shooting practice

Wieslaw Konopka, Piotr Zalewski, Piotr Pietkiewicz 
 Military Medical University, Lodz, Poland

Correspondence Address:
Wieslaw Konopka
Department of Otolaryngology Military Medical University, Zeromskiego 113, 90-549 Lodz


Firearms are a common source of impulse noise that may potentially damage a hearing organ. It is not easy to predict soldiers' personal susceptibility to noise exposure. The purpose of this study was to evaluate of the transient evoked otoacoustic emission (TEOAE) and distortion-product otoacoustic emission (DPOAE) before and after shooting and compare it with conventional pure tone audiometry. Standard pure tone audiometry, tympanometry, TEOAE and DPOAE measurements were recorded before and 10-15 minutes after shooting. Ten male soldiers (20 ears) were exposed to impulse noise from automatic gunfire (15 single rounds of live ammunition). They did not use any earplugs. The reduction in amplitude of the TEOAE after shooting was 3.1 and 5.1 as SPL for 3 and 4 kHz respectively for the right ear and 4.3 dB SPL for 1 kHz and 0.6 dB SPL at 2 kHz for the left ear. The greatest reduction in DPOAE occurred at frequencies of 1.0 kHz (3.8dB SPL) and 3.0 kHz (2.9 dB SPL) for the left ear. There were no differences in the audiometric thresholds before and after shooting. Emissions appear to be more sensitive for monitoring early cochlear changes after shooting, than pure tone audiometry.

How to cite this article:
Konopka W, Zalewski P, Pietkiewicz P. Evaluation of transient and distortion product otoacoustic emissions before and after shooting practice.Noise Health 2001;3:29-37

How to cite this URL:
Konopka W, Zalewski P, Pietkiewicz P. Evaluation of transient and distortion product otoacoustic emissions before and after shooting practice. Noise Health [serial online] 2001 [cited 2021 Sep 21 ];3:29-37
Available from:

Full Text

The discovery of otoacoustic emission (OAE) has given a new possibility in early diagnosis of the auditory system. Since 1978 OAE has played an important role in clinical practice as a method of universal neonatal screening and monitoring of micromechanical function of the cochlea (Kemp et al.,1993). Transient evoked otoacoustic emission (TEOAE) and distortion product otoacoustic emission (DPOAE) are non­invasive, objective and frequency specific tests for evalua-ting hair cell damage caused by noise and other etiological factors (Franklin et al., 1991; Schmiedt et al., 1986).

Sounds of high intensity often cause damage to the organ of Corti. Many publications have described the pattern of cellular damage or their loss. It is well known that the outer hair cells often get damaged first (Zenner, 1997). There are data that OAEs in humans and in animals become weaker after short exposures to noise (Lonsbury-Martin et al., 1991; Sliwinska -Kowalska et al., 1993) and OAE measurements appear to be a sensitive method of monitoring the early cochlear changes after noise-induced trauma (Hotz et al., 1993).

The published results about hearing loss caused by industrial noise, show that TEOAE and DPOAE provide the possibility of monitoring the development of noise- induced trauma (CEliwiflska-Kowalska 1998). According to Oeken (1998) measuring the DPOAE upon acute acoustic trauma could be relevant to prognosis for therapy.

Noise induced hearing loss is usually measured as temporary threshold shifts (TTS) or permanent threshold shifts (PTS) by pure tone audiometry but very seldom by OAEs.

Firearms are a common source of impulse noise that may potentially damage the hearing organ. Especially in countries where military service is compulsory, a large portion of the population is exposed to such noise. It is very important for soldiers to identify their individual susceptibility to noise exposure. It is difficult to predict temporary or permanent damage to hearing sensitivity (Henderson et al., 1993).

The aims of this study were to evaluate transient evoked otoacoustic emissions and distortion­product otoacoustic emission before and after shooting and compare with conventional pure tone audiometry.

 Material and Methods

Our material comprises 10 male soldiers (20 ears) who were in obligatory military service, with an average age of 20 years. There were in military service for 3 months and it was their shooting training. Written consent was obtained from all subjects and the project was approved by the local University Ethics Committee. The soldiers were exposed to impulse noise from automatic gunfire. The shooting range included 15 single rounds ( 150-165 dB peak level measured at the ear ) of live ammunition. They did not use any hearing protectors.

Conventional pure tone audiometry, tympanometry, evoked transient and distortion product otoacoustic emissions, were recorded before and about 10-15 minutes after shooting practice.

All the testing was performed in a relatively quiet room in a building on the grounds of the military installation.

In the same group OAE and PTA were measured twice with a 10-minute pause without noise exposure.

Otoacoustic emissions were recorded using an ILO 292 Echoport version 5.0. TEOAE recordings of 260 sweeps were collected for every subject at a stimulus level of 80 + 2dB SPL using 80 s duration clicks. An artefact rejection level of 4.6 mPa (47.3 dB SPL) was used throughout the recording session. Each response was windowed from 2.5 to 20 ms post stimulus and bandpass filtered from 500 to 6000 Hz. DPOAE were recorded with the DP- Gram procedure. The 2f1-f2 DPOAE were recorded at a single level of 70 dB SPL. The f2 /f1 ratio was held constant at 1.22 while f1 and f2 varied from 0.8 to 5.2 kHz and from 1.0 to 6.3 kHz. Averaging was used until the "noise floor" did not change any more. Only responses with an amplitude at least two standard deviation above the noise were used in the results. The statistical analysis was done with the Wald-Wolfowitz test with a significance level set as pThe effect of noise exposure on TEOAE was seen especially for 3 and 4 kHz and on DPOAE for 1.0 and 3 kHz.The amplitude reduction of the TEOAE was often greater in the right ear while DPOAE showed changes in the left ear. 3. Emissions seem to be more sensitive for monitoring cochlear changes than pure tone audiometry.[16]


1Attias J., Bresloff I. (1996) Noise Induced Temporary Otoacoustic Emission Shifts. Journal of Basic Clinical Physiology Pharmacology, 7(3): 221-233.
2Franklin DJ., Lonsbury-Martin B. L., Stagner B. B., Martin G.K. (1991) Altered susceptibility of 2 f1-f2 acoustic-distortion products to the effects of repeated noise exposure in rabbits. Hear. Res. 53: 185-208.
3Furst M., Reshef I., Attias J. (1992) Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. J. Acoust. Soc. Am. 91: 1003-1014.
4Henderson D, Subramaniam M, Boettcher FA. (1993) Individual susceptibility to noise-induced hearing loss: an old topic revisited. Ear Hear, 14: 152-168.
5Hotz M. A., Probst F. P., Harris, Hauser R.(1993) Monitoring the effects of noise exposure using transiently evoked otoacoustic emissions. Acta Otolaryngol. /Stockh/. 113: 478-482
6Kemp D.T. (1982) Cochlear echoes: implications for noise-induced hearing loss. In New Perspectives on Noise­induced Hearing Loss. Hamernik R.P., Henderson D., Salvi R.J., eds., Raven Press, New York, pp. 189-206.
7Kemp D. T., Ryan S. (1993) The use of transient evoked otoacoustic emissions in neonatal hearing screening programs. Seminars in Hearing. 14: 30-44.
8Lonsbury-Martin B.L., Whitehead M.L., Martin G.K. (1991) Clinical application of otoacoustic emissions. J. Speech Hear. Res. 34: 964-81.
9Norton S. J., Mott J. B. Champlin C.A. (1989) Behaviour of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation. Hear. Res. 38: 243-258.
10Oeken J. (1998) Distortion Product Otoacoustic Emissions in acute acoustic trauma. Noise Health 1: 56-66
11Schmied R. A. (1986) Acoustic distortion product in ear canal. I. Cubic difference tones: effects of acute noise injury. J. Acoust. Soc. Am. 79: 1481-1490.
12Subramaniam M., Henderson D., Spongr V. (1994) The relationship among distortion-product otoacoustic emissions, evoked potential thresholds and outer hair cells following interrupted noise exposures. Ear Hear. 15: 299­309.
13Sutton L.A., Lonsbury-Martin B.L., Martin G.K., Whitehead M. L. (1994) Sensitivity of distortion-product otoacoustic emissions in humans to tonal over-exposure: time course of recovery, and effects of lowering L2. Hear. Res. 75: 161-174.
14Sliwifiska-Kowalska M., Sulkowski W., Jedlifiska J., Rydzynski K.(1993) Relationships between functional and morphological changes in the cochlea of guinea pigs after exposure to industrial noise. Proc 6 th International Congress Noise Man. 93, 2: 127-130
15Sliwifiska-Kowalska M. (1998) The role of evoked and distortion-product otoacoustic emissions in diagnosis of occupational noise-induced hearing loss. Journal of Audiological Medicine 7(1): 29-45.
16Zenner H.P. (1997) The role of outer hair cell damage in the loss of hearing. Ear Nose Throat J. 76 (3), 140: 143­144